Explainability Index (EI) \& Risk of Target (RoT)

Ali Hirsa

Professor \& Director of Financial Engineering Industrial Engineering \& Operations Research (IEOR) Data Science Mrtitute (DSI)
Director of Center for AI in Business Analytics \& FinTech Columbia University
\&
Chief Scientific Officer, ASK2.ai
Managing Partner, Sauma Capital, LLC

Presentation at Princeton FinTech \& Quant Conference, April $15^{\text {th }}, 2023$

Picture of the Day

Quote of the Day

Successful investing is about managing risk, not avoiding it.

Benjamin Graham, father of value investing

Table of Contents

(1) Introduction
(2) EI Calculation Procedure

Introduction (1 of 2)

- 100s of proposed performance measures (ranging from very simple to more advanced, measured in different scales, linear/non-linear, etc) are used to खassess securities, evaluate portfolios, create asset allocation profiles, capital adequacy/efficiency, riskmanagement and so on (e.g., return, VaR, Sharpe, Calmar, etc)
- assessments hinge on the relative range of individual performance measures, and usage is based on some form of a grid of select measures with associated weights

Introduction (2 of 2)

- we propose a Unifying Framework of Performance Measures as an Explainability Index (EI) that captuires the multi-dimensionality and nuances measured by the individual measures, where it balances the different input categories of performance measures according to default or specified preferences and gives acomposite bounded score between 0 and 1.
- we also propose a relative measure as the Risk of Target (RoT) that leverages the EI for comparing the performance of assets/portfolios/etc with their targets and assesses the drivers of divergence.

Table of Contents

(2) EI Calculation Procedure
(3) Practical Appliceoions

Scaling

- first realization is that performance measures do not have the same scale
\triangleright making their direct comparison non-practical
- $1^{\text {st }}$ step: scaling of performance measures
\triangleright uše a sigmoid function to do so (scale values between 0 \& 1)

Scaling - Sigmoid

- a separate issue rises with the sigmoid function; given the nature of the value of the features, some performance measures get mapped into bucketed regions
- e.g. Batting Average has arange of values between 0% and 100%, resulting in a value between 0.5 and 1 after applying a sigmoid function ${ }^{1}$
- on the other hand, Max Drawdown has a range between -100% and 0%, resulting on a value between 0 and 0.5
- therefore, cannot compare scaled values of these performance measures

[^0]
Two-step transformation (1 of 2)

- for the sigmoid transformation to properly scale the measures, we apply a linear transformation beforehand
- linear mapping that aligns $\alpha \times 100 \%$ \& (1 er $\alpha) \times 100 \%$ of sigmoid with corresponding historicaldistribution respectively
- required values from the sigmoid function are obtained by:

$$
\frac{e^{c} 1}{1+e^{-x_{\alpha}}}=\alpha
$$

solving for $x_{\alpha}^{\text {e }}$ to get

$$
x_{\alpha}=-\ln \left(\frac{1-\alpha}{\alpha}\right)
$$

and

$$
x_{1-\alpha}=\ln \left(\frac{1-\alpha}{\alpha}\right)
$$

Two-step transformation (2 of 2)

- the linear transformation is given by

$$
\hat{m}=\beta\left(m-m_{\alpha}\right)-x_{\alpha}
$$

where

$$
\beta=\frac{x_{1-\alpha}-x_{\alpha}}{m_{1}-\alpha-m_{\alpha}}
$$

and m_{α} and $m_{1-\alpha}$ arefrom historical distribution

- for this step cvalues could come from the asset, the index, or a pool of multiple assets/indexes
thus we obtain

$$
\tilde{m}=\frac{1}{1+e^{-\hat{m}}}
$$

Transformation Example

Linear Transformation

$$
\beta=\frac{x_{1-\alpha}-x_{\alpha}}{m_{1-\alpha}-m_{\alpha}}
$$

Where β is slope, mapping:

$$
\hat{m}-x_{\alpha}=\beta\left(m-m_{\alpha}\right)
$$

With m as original, and \hat{m} as transformed via linear mapping

Proper Orientation of Performance Measures

- when building an index, we need to take into account the importance of the performance orientation
- for performance measures like Volatility the lower the better and for Return the higher the better
- by construction, EI assumes 0 is better than 1 , so direction needs to be adjusted accordingly
- in case of the higher the better, define $\bar{m}=1-\tilde{m}$, otherwise $\overline{\mathrm{m}}=\tilde{m}$
- after this adjustment, all performance measures have the same scale and orientation

Transformation Example - Return

Linear \& Sigmoid - Return for Large Cap Mutual Funds on 2021-12-3 Linear Transformation

Transformation Example - Volatility

Transformation Example - Max Drawdown

Sigmoid - Max Drawdown for Large Cap Mutual Funds on 2021-12-31

Linear \& Sigmoid - Max Drawdown for Large Cap Mutual Funds on 2021-12-31

Transformation Example - Sharpe Ratio

Sigmoid - Sharpe Ratio for Large Cap Mutual Funds on 2021-12-31
Original Measure

 Original Measure

Categories

- in order to enhance explainability of EI, we define categories based on user preferences
- four default categories are: return, volatility, drawdown, and alternatives
- within each category, all transformed performance measures are equally weighted which yields a number for each category
- when it comes to combining categories, users can use their own weights based on their preferences (default is equally weighted)

Explainability Index (EI)

- to unify all categories into a single value, i.e. EI, users can employ one of the below methods:
- arithmetic: $\sum_{k=1}^{K} w_{k} \bar{m}_{k}$
- geometric: $\prod_{k=1}^{K} \bar{m}_{k}^{w_{k}}$
- distributional: 1 -
- d_{H} is Hellinger distance
- $H^{2}\left(\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}\right)=1-\sqrt{\frac{2 \sigma_{1} \sigma_{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}} e^{-\frac{1}{4} \frac{\left(\mu_{1}-\mu_{2}\right)^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}}$
- $d_{H}=\frac{1}{N} \sum_{i=1}^{N} H^{2}\left(R^{(i)}, R\right)$

Risk of Target (RoT)

- comparing EI of an asset with EI of its benchmark would allow portfolio managers to assess their performance deviation from the target benchmark i.e. RoT T_{C}
- we can calculate RoT as a difference

$$
\mathrm{RoT}=\mathrm{EI}^{\text {asset }}-\mathrm{EI}^{\text {target }}
$$

or as a percentage difference

$$
\text { RoT }=\frac{\mathrm{EI}^{\text {asset }}-\mathrm{EI}^{\text {target }}}{\mathrm{EI}^{\text {target }}}
$$

User-defined Parameters

- here are user-defined parameters/preferences
- type of performance measures
- level of α for sigmoid transformation
- asset or group of assets used to determine z_{α} and $z_{1-\alpha}$
- categories
- weights
© 'EI methodology
- variation across time ${ }^{2}$

Table of Contents

(2) EI Calculation Procedure
(3) Practical Applications

Example 1 - Efficient Frontier

- efficient frontier compares assets in 2D, return \& volatility
- this could create undesirable risks

RoT Efficient Frontier

- RoT adds color for better visualization purposes
- it improves understanding in higher dimensional hidden risk

\square

RoT Fund Analysis

this is a deeper dive into one of the funds (can be for any asset)

RoT Multi Fund Analysis: Index Tracking ETFs (1 of 2)

- it makes RoT an ideal tool to compare howaćcurately an ETF can replicate the behavior of an index
- index tracking ETFs should have a nearly identical holding composition to their respective index but affected by fees, taxes, and transaction cost
- given that there are multiple index tracking ETFs, it is crucial to ${ }^{\text {assess }}$ which one follows closely their respective index

RoT Multi Fund Analysis: Index Tracking ETFs (2 of 2)

Benchmark [S\&P 500] vs ETFs

$k<\measuredangle \square \triangle>\square++$

Example 2 - RoT of Portfolios (1 of 2)

- RoT is ideal to assess portfolios against target objectives
- it is possible to combine RoT values of individual assets given that it is highly non-linear
- a portfolio RoT requires the calculation of all measures from portfolio monthly returns
- when presented with multiple portfolios that are in proximity to each other in the efficient frontier, RoT can portray their entire risk profile

Example 2 - RoT of Portfolios (2 of 2)

Benchmark [60\% S\&P 500 40\% US Agg] vs Portfolios ©ak ai

$K<\triangle D \triangle>\square++$

Table of Contents

Conclusion - power of EI \& RoT

- unify processes, assessments, and explanations
- add color and capture nuances (linearforon-linear) in a simple and explainable manner
- compare assets/portfolios in a uniform manner at a point in time (relative or trend)
- construct multi-objective asset allocation profiles/portfolios
- extend to incorporate any/all performance measures, alternative measures (e.g., Expense Ratios), holdings, etc

[^0]: ${ }^{1}$ for volatility would result in a value greater than 0.5

