Explainability Index (EI) & Risk of Target $(Rot)^{2023}$ Ence on April 15

Ali Hirsa

Professor & Director of Financial Engineering Industrial Engineering & Operations Research (IEOR) Data Science Institute (DSI) Director of Center for AT in Business Analytics & FinTech Presentation at Princeton Columbia University Chief Scientific Officer, ASK2.ai

Managing Partner, Sauma Capital, LLC

Presentation at Princeton FinTech & Quant Conference, April 15th. 2023 (日本本語を本書を本書を入事)の(で)

Picture of the Day

Practical Applications

Quote of the Day

Successful investing is about managing risk, not avoiding it.

Benjamin Graham, father of value investing

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Practical Applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Table of Contents

	April 15th, 201
1 Introduction	* Conference ou
2 EI Calculation Procedure	tuant
3 Practical Applice or Brind	
A Cation Presentation	

Introduction (1 of 2)

- 100s of proposed performance measures (ranging from very simple to more advanced, measured in different scales, linear/non-linear, etc) are used to assess securities, evaluate portfolios, create asset allocation profiles, capital adequacy/efficiency, risk management and so on (e.g., return, VaR, Sharpe, Calmar, etc)
- assessments hinge on the relative range of individual performance measures, and usage is based on some form of a grid of select measures with associated weights

Introduction (2 of 2)

- ril 15th , 202 • we propose a Unifying Framework of Performance Measures as an Explainability Index (EI) that captures the multi-dimensionality and nuances measured by the individual measures, where it balances the different input categories of performance measures according to default or specified preferences and gives accomposite bounded score between 0 ceton Fin and 1.
- we also propose a relative measure as the Risk of Target (RoT) that leverages the EI for comparing the performance of assets/portfolios/etc with their targets and assesses the drivers of divergence.

Practical Applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Table of Contents

	April 15th, 20
1 Introduction	conference on '
2 EI Calculation Procedure Quant	
3 Practical Applice OBns	
Cation at Presentation	

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Scaling

- first realization is that performance measures do not have the same scale
 making their direct comparison
 - FinTech

Prince
 use a sigmoid function to do so (scale values between 0 & 1)

Scaling - Sigmoid

- a separate issue rises with the sigmoid function; given the nature of the value of the features, some performance measures get mapped into bucketed regions
- e.g. Batting Average has a range of values between 0% and 100%, resulting in a value between 0.5 and 1 after applying a sigmoid function¹ Fin^{Tech}
- on the other hand, Max Drawdown has a range between -100% and 0%, resulting on a value between 0 and 0.5
- therefore, cannot compare scaled values of these performance measures

¹ for volatility would result in a value greater than $0.5 \rightarrow (2) \rightarrow (2$

Two-step transformation (1 of 2)

- for the sigmoid transformation to properly scale the measures, on April we apply a linear transformation beforehand
- linear mapping that aligns $\alpha imes 100\%$ & $(1 \not\in \alpha) imes 100\%$ of sigmoid with corresponding historical distribution respectively
- required values from the signoid function are obtained by:

solving for
$$x_{\alpha}^{\text{eton}}$$
 to get
 $x_{\alpha} = -\ln\left(\frac{1-\alpha}{\alpha}\right)^{2}$

$$x_{\alpha} = -\ln\left(\frac{1-\alpha}{\alpha}\right)$$

$$x_{1-\alpha} = \ln\left(\frac{1-\alpha}{\alpha}\right)$$

Introduction

EI Calculation Procedure

Practical Applications

Conclusion

Two-step transformation (2 of 2)

the linear transformation is given by

on (2 of 2)
ation is given by

$$\hat{m} = \beta(m - m_{\alpha}) - x_{\alpha}$$
 on April 15th, 20
 $\beta = x_{1-\alpha} - x_{\alpha}$

where

$$\beta = \frac{x_{1-\alpha} \nabla x_{\alpha}}{m_{1-\alpha} - m_{\alpha}}$$

and m_{α} and $m_{1-\alpha}$ are from historical distribution

• for this step, values could come from the asset, the index, or a pool of multiple assets/indexes

Presso tation at manufi

$$ilde{m} = rac{1}{1+e^{-\hat{m}}}$$

Transformation Example

Proper Orientation of Performance Measures

- when building an index, we need to take into account the importance of the performance orientation
- for performance measures like Volatility the lower the better and for Return the higher the better
- by construction, EI assumes 0 is better than 1, so direction needs to be adjusted accordingly
- in case of the higher the better, define $\bar{m} = 1 \tilde{m}$, otherwise $\bar{m} \stackrel{m}{\cong} \tilde{m}$
 - after this adjustment, all performance measures have the same scale and orientation

Practical Applications

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Transformation Example - Return

Practical Applications

Transformation Example - Volatility

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Practical Applications

Conclusion

Transformation Example - Max Drawdown

Practical Applications

Conclusion

Transformation Example - Sharpe Ratio

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

Categories

- in order to enhance explainability of EI, we define categories based on user preferences
- four default categories are: return, volatility, drawdown, and alternatives
- within each category, all transformed performance measures are equally weighted which yields a number for each category
- when it comes to combining categories, users can use their own weights based on their preferences (default is equally weighted)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Explainability Index (EI)

- to unify all categories into a single value, i.e. EI, users can employ one of the below methods: • geometric: $\prod_{k=1}^{K} \bar{m}_{k}^{w_{k}}$ • distributional: $1 - (1 - EI) \times (1 - d_{H})$ • d_{H} is Hellinger distance • $H^{2}(...$

• distributional:
$$h^{-1}(1 - EI) \times (1 - d_{H})$$

• d_{H} is Hellinger distance
Presentation
• $H^{2}(\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}) = 1 - \sqrt{\frac{2\sigma_{1}\sigma_{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}}e^{-\frac{1}{4}\frac{(\mu_{1} - \mu_{2})^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}}$
• $d_{H} = \frac{1}{N}\sum_{i=1}^{N}H^{2}(R^{(i)}, R)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Risk of Target (RoT)

- comparing EI of an asset with EI of its benchmark would allow portfolio managers to assess their performance deviation from the target benchmark i.e. RoT_{C onf}er
- we can calculate RoT as a difference
 - FROT = EI^{asset} EI^{target}

or as a percentage difference Presentation at Presentation at Presentation Presentation

 $RoT = \frac{EI^{asset} - EI^{target}}{EI^{target}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

User-defined Parameters

- -es on April 15th, 202 here are user-defined parameters/preferences
 - type of performance measures
 - level of α for sigmoid transformation
 - asset or group of assets used to determine z_{α} and $z_{1-\alpha}$
 - sories weights ceton Finte
- PresentationEI methodology • variation across time²

Practical Applications

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

æ

Table of Contents

Practical Applications 0000000

(a)

э

Example 1 – Efficient Frontier

- ril 15th, 204 efficient frontier compares assets in 2D, return & volatility
 this could create undesirable risks

RoT Efficient Frontier

- RoT adds color for better visualization purposes
- wil 15th , 204 • it improves understanding in higher dimensional chidden risk nce

us_agg

Practical Applications

RoT Fund Analysis

this is a deeper dive into one of the funds (can be for any asset) . any as April April Presentation at Princeton FinTech & Quant Conference on April

RoT Multi Fund Analysis: Index Tracking ETFs (1 of 2)

- it makes RoT an ideal tool to compare how accurately an ETF can replicate the behavior of an index of the second se
- index tracking ETFs should have a nearly identical holding composition to their respective index but affected by fees, taxes, and transaction cost
- given that there are multiple index tracking ETFs, it is crucial to assess which one follows closely their respective index

Practical Applications

Conclusion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Presentation at Princeton FinTech & Quant Conference on April 15th, 201 RoT Multi Fund Analysis: Index Tracking ETFs (2 of 2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example 2 – RoT of Portfolios (1 of 2)

- RoT is ideal to assess portfolios against target objectives
- it is possible to combine RoT values of individual assets given that it is highly non-linear
- a portfolio RoT requires the calculation of all measures from portfolio monthly returns
- when presented with multiple portfolios that are in proximity to each other in the efficient frontier, RoT can portray their entire risk profile

Practical Applications

Presentation at Princeton FinTech & Quant Conference on April 15th, 204 Example 2 – RoT of Portfolios (2 of 2)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Practical Applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Table of Contents

	April 15th, 20
1 Introduction	conference on ra
2 EI Calculation Procedure	Quant CC
3 Practical Applice or Brinder	
Caniclusion Presentanclusion	

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusion - power of EI & RoT

- unify processes, assessments, and explanations on April 15th, 20
- add color and capture nuances (linear/non-linear) in a simple and explainable manner
- compare assets/portfolios in a uniform manner at a point in time (relative or trend)
- construct multi-objective asset allocation profiles/portfolios

extend to incorporate any/all performance measures, alternative measures (e.g., Expense Ratios), holdings, etc